The algorithm, the elementary component of the FLoC technology, is still in an experimental state. Its function can be described as follows: Based on browser history, it assigns a user a cohort ID that represents the user’s interests. The individual user cannot be recognized by this ID, because it is shared with at least x other Chrome users (the number of users is currently not specified). Based on the ID, publishers and advertisers can then target their ads to match varying interests.
Google bases the development and refinement of the algorithm on the following principles:
- Cohort IDs should prevent cross-site tracking, i.e., cross-website tracking of user behavior.
- A cohort represents users with similar browser behaviors.
- The algorithm should be based on unsupervised learning, i.e., learning independently without intervention.
- The algorithm must limit the use of “magic numbers”. In other words, it should be characterized by the simplest and clearest possible parameters.
- The calculation of a FLoC cohort should be easy and require little computational effort.
The principles ensure that the generation and management of interest groups remain transparent and easy to understand and cannot be influenced from the outside. In addition, they ensure the best possible data protection, since according to the FLoC principle, user data will continue to be collected and used, but the users are anonymized within their cohorts.